

Терминал BioSmart PV-WTC

Инструкция по монтажу

ОГЛАВЛЕНИЕ

BBE	ВВЕДЕНИЕ		
1	Требования к квалификации инженера	4	
2	Описание терминала	4	
2.1	Описание лицевой панели терминала	4	
2.2	Описание индикации и перемычек на плате терминала	6	
2.3	Описание клеммных зажимов и разъемов для подключения	7	
3	Монтаж	8	
3.1	Особенности монтажа	8	
3.2	Порядок монтажа	9	
3.3	Подключение питания терминала	11	
3.4	Подключение терминала к сети Ethernet	11	
3.5	Подключение электромеханического замка к плате терминала	12	
3.6	Подключение электромагнитного замка через БУР BioSmart	14	
3.7	Подключение датчика прохода и кнопки управления	15	
3.8	Подключение к стороннему контроллеру по Wiegand	17	
3.9	Особенности монтажа для обеспечения пылевлагозащиты	17	
4	Настройка сетевых параметров	19	
5	Проверка работоспособности терминала	21	
6	Особенности исполнения терминала BioSmart PV-WTC-EM-L	22	
6.1	Описание терминала BioSmart PV-WTC-EM-L	22	
6.2	Монтаж и подключение терминала BioSmart PV-WTC-EM-L	23	

Уважаемые покупатели!

Благодарим Вас за приобретение нашей продукции! При соблюдении правил монтажа и эксплуатации данное устройство прослужит долгие годы.

введение

Настоящий документ описывает порядок действий по монтажу, подключению и конфигурации основных настроек терминала, а также проведению его диагностики.

Руководство по эксплуатации терминала BioSmart PV-WTC и программное обеспечение находятся по адресу <u>www.bio-smart.ru</u> в разделе «Технический портал».

Используемые сокращения:

ЖКИ – жидкокристаллический индикатор;

ПО – программное обеспечение;

СКУД – система контроля и управления доступом;

БУР – блок управления реле;

ОС – операционная система.

– так выделена важная информация, на которую следует обратить внимание.

1 Требования к квалификации инженера

К монтажным работам допускаются инженеры с допуском по работе с электроустановками до 1000 В., группа по электробезопасности № III, обладающие необходимыми знаниями в области настройки сетевого оборудования и администрирования ОС Windows.

2 Описание терминала

Терминал BioSmart PV-WTC предназначен для работы в составе биометрической системы контроля и управления доступом BioSmart. Терминал позволяет организовать учет рабочего времени посредством идентификации пользователей по уникальным биометрическим особенностям строения подкожных вен ладоней человека и бесконтактным RFID-меткам (картам). Терминал (кроме исполнения <u>BioSmart PV-WTC-EM-L</u>) может применяться для организации контроля и управления доступом. Особенности исполнения BioSmart PV-WTC-EM-L приведены в разделе 6.

2.1 Описание лицевой панели терминала

Внешний вид терминала представлен на рисунке 1.

Рисунок 1 – Внешний вид терминала BioSmart PV-WTC

- 1. Поле для считывания пластиковых карт
- 2. ЖК экран
- 3. Клавиатура
- 4. Сканер вен ладони

Навигация по экранному меню осуществляется с помощью кнопок клавиатуры (см. рисунок 2).

Рисунок 2 – Клавиатура терминала

2 - переход вверх по списку;

- переход вправо или переход от списка к функциональным кнопкам. В меню 6 «Пользователи» используется для постраничной навигации;

– переход влево или переход от функциональных кнопок к списку, в меню 4 «Пользователи» используется для постраничной навигации;

- переход для подтверждения в меню «сотрудники»;
- переход вниз по списку;

5

8

- выполняет функции выбора и подтверждения;
- выполняет функции возврата в предыдущий раздел меню или удаления последней введенной цифры.

Все числовые настройки также вводятся с клавиатуры.

2.2 Описание индикации и перемычек на плате терминала

Расположение контактов, разъёмов, перемычек и индикаторов на печатной плате терминала представлено на рисунке 3 (кроме исполнения BioSmart PV-WTC-EM-L). Состав и расположение элементов на плате терминала BioSmart PV-WTC-EM-L отличается от указанного на рисунке 3 и приведено в разделе 6.

Рисунок 3 – Расположение контактов, разъёмов, перемычек и индикаторов на печатной плате терминала

- Светодиоды, размещенные на разъеме X5 (Ethernet), отображают состояние физического подключения (Link, зеленый) и активности обмена по сети (Activity, красный);
- Светодиод **REL** загорается при включении бортового реле. При включении бортового реле замыкаются выходы **RELAY;**
- Светодиод IN загорается при поступлении +12В на вход IN терминала;
- Светодиод РоЕ загорается при наличии питания терминала по стандарту РоЕ;
- Светодиод **5V** загорается при наличии питания микросхем +5B, что говорит об исправности источника питания терминала;
- Светодиоды **STATE** отображают информацию о работе системы (для служебного пользования);
- Перемычка IPRST предназначена для сброса сетевых настроек на заводские;
- Перемычка **RST** предназначена для перезагрузки терминала. Для перезагрузки терминала при включенном питании необходимо замкнуть контакты перемычки на 1 секунду.

Для сброса сетевых настроек при включенном питании необходимо замкнуть контакты перемычки **IPRST** и дождаться, пока светодиоды **Link** и **Activity** на разъеме Ethernet погаснут. После этого перемычку необходимо разомкнуть.

2.3 Описание клеммных зажимов и разъемов для подключения

Описание контактов печатной платы терминала приведено в таблице 1. Таблица 1 – Разъемы печатной платы терминала

Nº	Маркировка	Описание	Назначение подключения		
1	RELAY	Выход нормально разомкнутого контакта реле (DC 1A, 12B)	Управляющий вход исполнительного устройства		
2	RELAY	Выход нормально разомкнутого контакта реле (DC 1A, 12B)	Выход источника питания исполнительного устройства		
3	WOI	Выход DATA1 интерфейса Wiegand	Вход DATA1 интерфейса Wiegand стороннего контроллера		
4	WO0	Выход DATA0 интерфейса Wiegand	Вход DATA0 интерфейса Wiegand стороннего контроллера		
5	IN+	Выход +12В для подачи на дискретный вход	Кнопка управления реле		
6	IN	Дискретный вход	Выход датчика двери, кнопка управления реле		
7	485-	- интерфейса RS485 связи с БУР	Контакт -485 БУР		
8	485+	+ интерфейса RS485 связи с БУР	Контакт +485 БУР		
9	USB	Разъем USB для подключения модулей (Wi-Fi,Bluetooth,3G-модем)	USB модуль		
10	X5	Разъем под RJ45(8P8C) коннектор интерфейса связи Ethernet	Сетевое устройство Ethernet		
11	X21	Место, зарезервированное под стандартный разъем БП (12В)	Блок питания 12В		
12	GND	Питание, общий провод	Общий провод источника питания 12В		
13	+12 V	Питание, +12В	"+" источника питания 12В		

3 Монтаж

3.1 Особенности монтажа

При выборе места установки терминала необходимо учитывать следующее:

Терминал рекомендуется устанавливать только на вертикальной поверхности на высоте 150-170 см от пола, исходя из соображения удобства позиционирования ладони на сканере, предъявления RFID-карты, просмотра событий на ЖК экране. К терминалу должен быть обеспечен свободный и беспрепятственный доступ для удобного позиционирования руки;

Высота установки терминала и удобство прикладывания ладони оказывают существенное влияние на результат идентификации. Если сотруднику не удобно прикладывать ладонь к терминалу, приходится изгибать руку или продавливать ладонь, то рисунок вен ладони искажается и вероятность ошибки идентификации повышается.

Правила прикладывания ладони к сканеру терминала показаны на рисунке 4.

ПОЛОЖИТЕ РУКУ НА СКАНЕР: (1) ДО УПОРОВ МЕЖДУ ПАЛЬЦЕВ 2) БОЛЬШОЙ ПАЛЕЦ В СТОРОНУ (3) ЗАПЯСТЬЕ НА ПОДСТАВКУ 4) РУКА ПРЯМО Изогнута Ровно и плотно Не прижата Продавлена

Пальцы на сканере

Рисунок 4 – Правила прикладывания ладони к сканеру терминала

- При установке нескольких терминалов, их следует устанавливать на расстоянии не менее 80 см друг от друга для минимизации взаимного влияния работы встроенных считывателей RFID-карт;
- Не рекомендуется устанавливать терминал на расстоянии менее 1 м от любых внешних RFID считывателей и других источников электромагнитных помех. Близко расположенные источники электромагнитных помех могут негативно сказаться на работе встроенных считывателей RFID-карт;
- Рекомендуется оставлять запас длины кабелей, подключенных к терминалу, достаточный для отведения терминала от стены и доступа к перемычкам;

Инструкция по монтажу \rightarrow bio-smart.ru

9

- При установке контроллера на металлическую поверхность дальность считывания RFID-карты может уменьшиться.
- При прокладке кабелей придерживайтесь следующих рекомендаций:
- Прокладку кабелей необходимо производить с соблюдением правил эксплуатации электроустановок;
- Не прокладывайте кабели на расстоянии менее 30 см от источников электромагнитных помех;
- Пересечение всех кабелей с силовыми кабелями допускается только под прямым углом;
- Любые удлинения кабелей должны производиться только методом пайки;
- Используйте типы кабелей, указанные в таблице 2 или близкие им по техническим характеристикам.

№ каб.	Кабельное соединение	Макс. длина	Тип
1	Ethernet (IEEE 802.3) - терминал	100 м	Четыре витые пары не ниже пятой категории с сечением проводов не менее 0.2 мм ² .
2	Источник питания - терминал	50 м	Двужильный кабель с сечением проводов не менее 0.75 мм ² (например, ШВВП).
3	Терминал – замок, БУР - замок	20 м	Двужильный кабель с сечением проводов не менее 0.75 мм² (например, ШВВП).
4	Терминал – БУР BioSmart	100 м	Четыре витые пары не ниже пятой категории с сечением проводов не менее 0.2 мм ² .
5	Терминал, контакты IN, IN+ - внешние устройства	10 м	Кабель CQR-6 или RAMCRO-6
6	Терминал контакты WOO, WO1 - внешние устройства	60 м	Четыре витые пары не ниже пятой категории с сечением проводов не менее 0.2 мм ² .

Таблица 2 – Используемые типы кабелей

Перед началом монтажа:

- Тщательно проверьте отсутствие механических повреждений на поверхности сканера отпечатков пальцев терминала, печатной плате и корпусе прибора;
- Зачищенные концы кабеля для подключения терминала не должны превышать 5 мм, во избежание замыканий.

Для обеспечения пылевлагозащиты необходимо выполнить указания пункта 3.9.

Терминал исполнения BioSmart PV-WTC-EM-L существенно ограничен в возможности подключения сторонних устройств. Перед монтажом терминала BioSmart PV-WTC-EM-L ознакомьтесь с описанием этого терминала и особенностями его подключения, приведенными в разделе 6.

3.2 Порядок монтажа

Монтаж терминала нужно осуществлять в следующем порядке.

- 1. Распакуйте коробку и проверьте комплектность терминала.
- 2. Определите место установки терминала.
- 3. Выкрутите винты, расположенные в нижней части корпуса терминала и крепящие его к установочной пластине. Снимите установочную пластину.

- 4. Разметьте места крепления терминала, приложив установочную пластину терминала к стене (рисунок 5).
- 5. Осуществите прокладку и подвод всех необходимых кабелей. Должны применяться кабели, соответствующие таблице 2, или близкие ПО техническим характеристикам. Проверьте отсутствие разрывов, замыканий и механических повреждений кабелях. Подключение производите при В отключенном электропитании.
- 6. Заведите кабели в отверстие для ввода кабелей задней крышки терминала.
- 7. Закрепите заднюю крышку терминала на установочной поверхности с помощью крепежа, входящего в комплект поставки.
- 8. Выкрутите винты, расположенные в задней части корпуса терминала.
- 9. Снимите заднюю часть корпуса терминала.
- 10. Заведите кабели в отверстие для ввода кабелей задней части корпуса терминала. При необходимости обеспечения пылевлагозащиты терминала нужно использовать гермоввод (см. пункт 3.9).
- 11. Подключите питание терминала согласно п.3.3.
- 12. Подключите сетевой кабель терминала согласно п.3.4.
- 13. При необходимости подключите замок и внешние датчики согласно п. 3.5 3.7 при использовании терминала для организации контроля и управления доступом или совместной работы со сторонним оборудованием через интерфейс Wiegand.
- 14. После подключения всех необходимых кабелей установите терминал на заднюю крышку и заверните расположенные на нижнем торце крепежные винты.

15. Снимите защитную пленку с клавиатуры и экрана.

Рисунок 5 – Разметка мест крепления

3.3 Подключение питания терминала

Используйте кабель №2 (см. таблицу 2) для подключения питания согласно схеме подключения, представленной на рисунке 6.

Также допустимо подключение к РоЕ-устройству. Используйте кабель №1 (см. таблицу 2).

3.4 Подключение терминала к сети Ethernet

Подключение к сети Ethernet производите согласно рисунку 7. Для обеспечения степени защиты IP65, обжимку кабеля следует производить после пропуска его через гермоввод. Если степень защиты IP65 не требуется, гермоввод можно предварительно снять. В этом случае обжим кабеля можно проводить без пропуска его через отверстие в крышке терминала.

Рисунок 7 – Схема подключения терминала к сети Ethernet

Используйте кабель №1 (см. таблицу 2) для подключения терминала (разъем Ethernet) к компьютеру, коммутатору или роутеру. Обжимку наконечника кабеля нужно производить по стандарту TIA/EIA-568-B, согласно рисунку 8.

Рисунок 8 – Обжим кабеля UTP

3.5 Подключение электромеханического замка к плате терминала

Электромеханический замок подключается к терминалу, согласно схеме, приведенной на рисунке 9. Используйте кабель №3 (см. таблицу 2) для подключения электромеханического замка.

Рисунок 9 – Схема подключения электромеханического замка к терминалу

Для защиты бортового реле контроллера от обратного тока, возникающего в цепи при срабатывании замка, требуется установить шунтирующий диод, согласно схеме, приведенной на рисунке 9. Рекомендуется использовать диод типа 1N4007 (1A,100B) или аналогичный.

Не рекомендуется использовать один и тот же источник питания для подключения замка и контроллера.

Для управления одним электромеханическим замком с двух терминалов подключите их в соответствии со схемой, изображенной на рисунке 10.

Рисунок 10 – Схема подключения двух терминалов BioSmart PV-WTC к одному электромеханическому замку

3.6 Подключение электромагнитного замка через БУР BioSmart

На терминале BioSmart PV-WTC используются нормально разомкнутые контакты реле, поэтому терминал может управлять электромагнитным замком только с помощью блока управления реле БУР BioSmart. Схема подключения приведена на рисунке II. Для подключения используйте кабели № 3,4 (см. таблицу 2).

PV-WTC2

Рисунок 11 – Схема подключения электромагнитного замка

Для защиты реле БУР от обратного тока, возникающего в цепи при срабатывании замка, требуется установить шунтирующий диод, согласно схеме, приведенной на рисунке 11. Рекомендуется использовать диод типа 1N4007 (1A,100B) или аналогичный.

Подключение и настройка БУР BioSmart подробно описаны в **Руководстве по эксплуатации БУР BioSmart**. Всю необходимую информацию можно найти на сайте <u>www.bio-smart</u> в разделе «Технический портал».

3.7 Подключение датчика прохода и кнопки управления

Датчик прохода или кнопку выхода из помещения можно подключить непосредственно к бортовому дискретному входу BioSmart PV-WTC, согласно схеме, приведенной на рисунке 12.

Рисунок 12 – Схема подключения датчика двери или кнопки к бортовому дискретному входу

Для подключения используйте кабель №5 (см. таблицу 2). Если для организации контроля и управления доступом требуется совместное применение датчика прохода и кнопки выхода из помещения, то необходимо производить подключение с использованием устройства БУР BioSmart, согласно схеме, приведенной на рисунке 13.

PV-WTC2

Рисунок 13 – Схема подключения датчика двери и кнопки посредством БУР BioSmart

Не рекомендуется использовать один и тот же источник питания для подключения замка и БУР

Для подключения используйте кабели №№4,5 (см. таблицу 2). Подключение и настройка БУР BioSmart подробно описаны в **Руководстве по эксплуатации БУР BioSmart.** Всю необходимую информацию можно найти на сайте <u>www.bio-smart.ru</u> в разделе «Технический портал».

3.8 Подключение к стороннему контроллеру по Wiegand

Подключение терминала к стороннему контроллеру СКУД по интерфейсу Wiegand производится, согласно схеме, приведенной на рисунке 14. Для подключения используйте кабель №6 (см. таблицу 2).

Рисунок 14 – Схема подключения терминала к стороннему контроллеру по интерфейсу Wiegand

3.9 Особенности монтажа для обеспечения пылевлагозащиты

Терминал BioSmart PV-WTC имеет степень пылевлагозащиты IP65, которая достигается за счёт использования влагозащищенного корпуса с герметизирующими элементами конструкции. Для обеспечения заявленной степени защиты при монтаже необходимо выполнение следующих правил:

- Должна быть сохранена целостность корпуса терминала (трещины и сколы на корпусе могут привести к проникновению пыли и влаги);
- Электропитание терминала и подключение его к сети Ethernet должно выполняться с помощью **одного** кабеля UTP (кабель №1, см. таблицу 2), фиксируемого посредством гермоввода (электропитание при этом должно поступать от РоЕ-инжектора);
- Задняя крышка должна плотно прилегать к основанию корпуса терминала через уплотнительную резинку.

Терминал BioSmart PV-WTC может поставляется с гермовводом, установленным на задней крышке, или входящим в состав поставочного комплекта.

- При отсутствии установленного гермоввода, его монтаж производится следующим образом:
 - Отсоедините заднюю крышку терминала;
 - Накрутите на штуцер гермоввода прижимную гайку со стороны зубчатой муфты, оставив отверстие достаточное для вставки фиксируемого кабеля;

- Установите на штуцер гермоввода резиновое уплотнительное кольцо;
- Вставьте штуцер гермоввода в отверстие для кабеля на задней крыше терминала так, чтобы уплотнительное кольцо оказалось плотно зажато между наружной стороной задней крышки и широкой частью штуцера;
- Накрутите крепёжную гайку на резьбу штуцера, выступающую с обратной (внутренней) стороны задней крышки терминала.

Для монтажа кабеля при установленном гермовводе:

- Вставьте необжатый конец кабеля в гермоввод и протяните кабель на необходимую длину, при необходимости предварительно ослабьте прижимную гайку;
- Обожмите конец кабеля в соответствии с указаниями в пункте 3.4;
- Плотно затяните прижимную гайку с наружной стороны задней крышки;
- Вставьте разъём в порт Ethernet.

Установка задней крышки терминала выполняется следующим образом:

- Приложите заднюю крышку к корпусу терминала. Убедитесь в том, что уплотнительная резинка не выпала из специальной выемки и плотно прижата выступом со стороны задней крышки;
- Закрепите заднюю крышку с помощью винтов. Важно проконтролировать, чтобы в процессе затягивания винтов уплотнительная резинка не выдавилась из специальной выемки. Поэтому, затягивать винты на задней крышке следует осторожно, постепенно подкручивая каждый винт.

После выполнения вышеперечисленных указаний закончите монтаж терминала в соответствии с порядком монтажа, описанном в пункте 3.2.

4 Настройка сетевых параметров

• Подайте питание на терминал. Дождитесь включения экрана.

Заводские настройки пароля администратора – пустой пароль.

- После первого входа в режим настроек рекомендуется установить новый пароль для исключения в дальнейшем несанкционированного доступа к настройкам терминала.
- Используя навигационные клавиши, войдите в основное меню терминала и выберите «Меню» (рисунок 15).

Рисунок 15 – Выбор «меню»

Выберите раздел «Настройки» (рисунок 16)

Рисунок 16 – Выбор «Настройки»

С помощью навигационных клавиш выберите пункт «**Сеть**» (рисунок 17).

Неправильно заданный адрес шлюза может быть причиной проблем с подключением к Biosmart-Studio v5.

Рисунок 17 – Сеть

- Выберите в списке раздел «Новый IP адрес», нажмите
- Введите с клавиатуры требуемый IP адрес, нажмите
- Таким же образом введите требуемые настройки сетевой маски и шлюза (в случае отсутствия шлюза – IP сервера Biosmart-Studio).
- Перейдите на кнопку «Применить» и нажмите

После этого новые сетевые настройки вступят в силу.

Прибор готов к началу эксплуатации. Дальнейшее конфигурирование устройства рекомендуется проводить посредством ПО Biosmart-Studio.

Руководство по эксплуатации терминала BioSmart PV-WTC, все необходимые драйвера и программное обеспечение находятся по адресу <u>www.bio-smart.ru</u> в разделе «Технический портал».

5 Проверка работоспособности терминала

Откройте меню «**Ошибки**», убедитесь, что физическое соединение с сетью Ethernet установлено и ошибок в работе устройства нет.

При правильном подключении и установке сетевых параметров должны выводиться следующие параметры:

Ок.; Ок.;

Oк.

_	Соединение с базой	
_		

– Устройства ввода /вывода – Сканер

При наличии ошибок устройства ввода / вывода или сканера необходимо связаться с изготовителем для проведения сервисных работ.

6 Особенности исполнения терминала BioSmart PV-WTC-EM-L

6.1 Описание терминала BioSmart PV-WTC-EM-L

Терминал BioSmart PV-WTC-EM-L предназначен исключительно для организации учёта рабочего времени и не поддерживает взаимодействие со сторонними устройствами.

Внешний вид терминала BioSmart PV-WTC-EM-L не отличается от других исполнений, но печатная плата переработана и существенно отличается.

Расположение контактов, разъёмов, перемычек и индикаторов на печатной плате терминала BioSmart PV-WTC-EM-L показан на рисунке 18.

Рисунок 18 – Расположение контактов, разъёмов, перемычек и индикаторов на печатной плате терминала BioSmart PV-WTC-EM-L

Обозначение и назначение элементов на плате приведено в таблице 3.

Таблица 3 – Обозначение и	1 назначение элементов на	плате терминала	BioSmart PV-	WTC-EM- L
са <i>вин</i> ца в сесона нените и				

Nº	Обозначение	Назначение
1	VL6	Датчик вскрытия корпуса
2	X11 (TAMPER)	Контакты для подключения датчика отрыва корпуса от стены
3	Х7	Разъём для карт MicroSD
4	X13 (IP_RST)	Перемычка для сброса сетевых параметров на заводские
5	Х4	Разъем под RJ45(8P8C) коннектор интерфейса связи Ethernet с поддержкой РоЕ
6	X9 (+12V)	Клемма для подключения «+» источника питания 12В
7	X9 (GND)	Клемма для подключения общего провода источника питания 12В
8	VL1 (PoE)	Светодиод, сигнализирующий о наличии питания терминала по стандарту РоЕ
9	VL3 (+5V)	Светодиод, сигнализирующий о наличии питания микросхем +5В

6.2 Монтаж и подключение терминала BioSmart PV-WTC-EM-L

Монтаж терминала BioSmart PV-WTC-EM-L осуществляется так же, как и монтаж терминалов других исполнений (см. пункт 3), кроме подключения сторонних устройств. Подключение сторонних устройств не допускается конструкцией терминала BioSmart PV-WTC-EM-L.

На плате терминала BioSmart PV-WTC-EM-L имеется разъём Ethernet для подключения к сетевому устройству. Если сетевое устройство оборудовано РоЕ-инжектором, то питание терминала можно осуществлять через разъём Ethernet. В противном случае, питание терминала обеспечивается через клеммы X9 от источника питания 12В.

Подключение терминала BioSmart PV-WTC-EM-L к сети Ethernet выполняется в соответствии пунктом 3.4.

Подключение терминала BioSmart PV-WTC-EM-L к источнику питания выполняется в соответствии с пунктом 3.3.

Настройки сетевых параметров и проверка работоспособности терминала BioSmart PV-WTC-EM-L выполняется в соответствии с пунктами 4 и 5.

ООО «Прософт-Биометрикс» Сайт: www.bio-smart.ru